Skip to content

Chapter 21: Try1

Quantum Computing - Expanded Lecture Summaries

Lecture 3: Bloch Sphere, Eigenstates, Eigenvectors, Projection Operator

Key Concepts

Pauli-X Gate Matrix

The Pauli-X gate matrix is:

\[ X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]

Hadamard Gate Matrix

The Hadamard gate matrix is:

\[ H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \]

Pauli-X Gate Identity

The Pauli-X (NOT) gate satisfies the identity:

$$ X = HZH $$ where \(H\) is the Hadamard gate.

The Pauli-X gate matrix representation:

\[ X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]

Hadamard Transform

The Hadamard gate creates superposition states:

\[ H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \quad H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \]

Matrix representation:

\[ H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \]

Pauli-Z Gate Identity

The Pauli-Z gate affects the phase of a qubit:

\[ Z|0\rangle = |0\rangle, \quad Z|1\rangle = -|1\rangle \]

Matrix representation:

\[ Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \]

Projection Operator

The projection operator for a qubit basis state:

\[ P_0 = |0\rangle\langle0| = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad P_1 = |1\rangle\langle1| = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \]

Two-Qubit States and Matrices

A general two-qubit state:

\[ |\psi\rangle = c_{00}|00\rangle + c_{01}|01\rangle + c_{10}|10\rangle + c_{11}|11\rangle \]

Matrix representation:

\[ |\psi\rangle = \begin{bmatrix} c_{00} \\ c_{01} \\ c_{10} \\ c_{11} \end{bmatrix} \]

Toffoli Gate (CCNOT)

A three-qubit gate that flips the target qubit if both control qubits are \( |1\rangle \).

Matrix representation:

\[ \text{Toffoli} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \]